Step of Proof: do-apply-p-lift
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
do-apply-p-lift
:
A
,
B
:Type,
P
:(
A
),
d
:(
x
:
A
Dec(
P
(
x
))),
f
:({
x
:
A
|
P
(
x
)}
B
),
x
:
A
.
(
can-apply(p-lift(
d
;
f
);
x
))
(do-apply(p-lift(
d
;
f
);
x
) =
f
(
x
))
latex
by ((((Auto
)
CollapseTHEN (MoveToConcl (-1)))
)
CollapseTHEN (RepUR ``
C
can-apply do-apply p-lift`` ( 0)
))
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
B
: Type
C1:
3.
P
:
A
C1:
4.
d
:
x
:
A
Dec(
P
(
x
))
C1:
5.
f
: {
x
:
A
|
P
(
x
)}
B
C1:
6.
x
:
A
C1:
(
isl(case
d
(
x
) of inl(
a
) => inl (
f
(
x
)) | inr(
a
) => inr
a
))
C1:
(outl(case
d
(
x
) of inl(
a
) => inl (
f
(
x
)) | inr(
a
) => inr
a
) =
f
(
x
))
C
.
Definitions
x
.
t
(
x
)
,
x
.
A
(
x
)
,
suptype(
S
;
T
)
,
S
T
,
Top
,
x
:
A
.
B
(
x
)
,
Void
,
{
x
:
A
|
B
(
x
)}
,
x
:
A
.
B
(
x
)
,
Dec(
P
)
,
x
(
s
)
,
f
(
a
)
,
,
s
=
t
,
t
T
,
Type
,
P
Q
,
x
:
A
B
(
x
)
,
can-apply(
f
;
x
)
,
p-lift(
d
;
f
)
,
do-apply(
f
;
x
)
,
b
Lemmas
assert
wf
,
can-apply
wf
,
p-lift
wf
,
top
wf
,
member
wf
,
decidable
wf
origin